Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.488
Filtrar
1.
Sci Rep ; 14(1): 8493, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605135

RESUMO

This study involved the production of 20 biochar samples derived from secondary medicinal residues of Snow Lotus Oral Liquid, processed within the temperature range of 200-600 °C. Additionally, four medicinal residues, including dissolved organic matter (DOM), from 24 samples obtained using the shaking method, served as the primary source material. The investigation focused on two key factors: the modifier and preparation temperature. These factors were examined to elucidate the spectral characteristics and chemical properties of the pharmaceutical residues, biochar, and DOM. To analyze the alterations in the spectral attributes of biochar and medicinal residues, we employed near-infrared spectroscopy (NIR) in conjunction with Fourier-infrared one-dimensional and two-dimensional correlation spectroscopy. These findings revealed that modifiers enhanced the aromaticity of biochar, and the influence of preparation temperature on biochar was diminished. This observation indicates the stability of the aromatic functional group structure. Comparative analysis indicated that Na2CO3 had a more pronounced structural effect on biochar, which is consistent with its adsorption properties. Furthermore, we utilized the fluorescence indices from UV-visible spectroscopy and excitation-emission-matrix spectra with the PARAFAC model to elucidate the characteristics of the fluorescence components in the DOM released from the samples. The results demonstrated that the DOM released from biochar primarily originated externally. Aromaticity reduction and increased decay will enhance the ability of the biochar to bind pollutants. Those results confirmed the link between the substantial increase in the adsorption performance of the high-temperature modified charcoal in the previous study and the structural changes in the biochar. We investigated the structural changes of biochar and derivative DOM in the presence of two perturbing factors, modifier and preparation temperature. Suitable modifiers were selected. Preparation for the study of adsorption properties of snow lotus medicinal residues.


Assuntos
Carvão Vegetal , Lotus , Carvão Vegetal/química , Matéria Orgânica Dissolvida , Temperatura , Espectrometria de Fluorescência/métodos , Substâncias Húmicas/análise
2.
Nat Commun ; 15(1): 3436, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653767

RESUMO

Symbiosis with soil-dwelling bacteria that fix atmospheric nitrogen allows legume plants to grow in nitrogen-depleted soil. Symbiosis impacts the assembly of root microbiota, but it is unknown how the interaction between the legume host and rhizobia impacts the remaining microbiota and whether it depends on nitrogen nutrition. Here, we use plant and bacterial mutants to address the role of Nod factor signaling on Lotus japonicus root microbiota assembly. We find that Nod factors are produced by symbionts to activate Nod factor signaling in the host and that this modulates the root exudate profile and the assembly of a symbiotic root microbiota. Lotus plants with different symbiotic abilities, grown in unfertilized or nitrate-supplemented soils, display three nitrogen-dependent nutritional states: starved, symbiotic, or inorganic. We find that root and rhizosphere microbiomes associated with these states differ in composition and connectivity, demonstrating that symbiosis and inorganic nitrogen impact the legume root microbiota differently. Finally, we demonstrate that selected bacterial genera characterizing state-dependent microbiomes have a high level of accurate prediction.


Assuntos
Lotus , Microbiota , Nitrogênio , Raízes de Plantas , Transdução de Sinais , Simbiose , Lotus/microbiologia , Lotus/metabolismo , Nitrogênio/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Microbiota/fisiologia , Rizosfera , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Microbiologia do Solo , Fixação de Nitrogênio , Exsudatos de Plantas/metabolismo
3.
BMC Plant Biol ; 24(1): 225, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539110

RESUMO

BACKGROUND: Plants are considered the primary source of many principal bioactive compounds that have been utilized in a wide range of applications including the pharmaceutical and biotechnological industries. Therefore, there is an imperative need to modulate the production of natural bioactive components. The present study aimed to determine the importance of dried and pulverized date palm seeds (DPS) as a natural elicitor for the synthesis of secondary metabolites in Lotus arabicus L. RESULTS: The presence of various antioxidant compounds, simple sugars, amino acids, fatty acids and reasonable mineral contents was distinct in the phytochemical characterization of DPS. The major components detected in DPS analysis were the 5-(hydroxymethyl) furfural and 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyranone. The induced callus of L. arabicus (seven weeks old) was supplemented with DPS at different concentrations (0, 2, 4, 8 and 10 g/l) in culture media. Treatment with 8 g/l DPS induced the highest antioxidant capacity, ascorbic acid content and secondary metabolites (total phenolics and flavonoids) in the produced callus. Stress biomarkers (hydrogen peroxide and malondialdehyde) were found in the control ranges except at 10 g/l DPS. The expression patterns of key genes involoved in secondary metabolism modulation, such as phenylalanine ammonia lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), flavonol synthase (FLS) and deoxyxylulose phosphate reductoisomerase (DXR), were triggered after DPS treatments. Moreover, the quantitative profiling of phenolic and flavonoid compounds showed that supplementation with DPS, especially at 8 g/l, led to pronounced increases in most of the measured compounds. CONCLUSION: The marked upregulation of eliciting-responsive genes and overproduction of secondary metabolites provide molecular-based evidence for intensifying the principal pathways of phenylpropanoid, flavonoid and terpenoid biosynthesis. Overall, the present in vitro study highlights the stimulating capacity of DPS utilization to improve the bioactive components of L. arabicus at the physiological and molecular levels, enhancing its potential as a medicinal herb.


Assuntos
Lotus , Phoeniceae , Antioxidantes/metabolismo , Lotus/metabolismo , Phoeniceae/metabolismo , Pós , Flavonoides/metabolismo , Fenóis/metabolismo , Sementes/metabolismo
4.
J Environ Manage ; 356: 120502, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479281

RESUMO

Effective removal of phosphorus from water is crucial for controlling eutrophication. Meanwhile, the post-disposal of wetland plants is also an urgent problem that needs to be solved. In this study, seedpods of the common wetland plant lotus were used as a new raw material to prepare biochar, which were further modified by loading nano La(OH)3 particles (LBC-La). The adsorption performance of the modified biochar for phosphate was evaluated through batch adsorption and column adsorption experiments. Adsorption performance of lotus seedpod biochar was significantly improved by La(OH)3 modification, with adsorption equilibrium time shortened from 24 to 4 h and a theoretical maximum adsorption capacity increased from 19.43 to 52.23 mg/g. Moreover, LBC-La maintained a removal rate above 99% for phosphate solutions with concentrations below 20 mg/L. The LBC-La exhibited strong anti-interference ability in pH (3-9) and coexisting ion experiments, with the removal ratio remaining above 99%. The characterization analysis indicated that the main mechanism is the formation of monodentate or bidentate lanthanum phosphate complexes through inner sphere complexation. Electrostatic adsorption and ligand exchange are also the mechanisms of LBC-La adsorption of phosphate. In the dynamic adsorption experiment of simulated wastewater treatment plant effluent, the breakthrough point of the adsorption column was 1620 min, reaching exhaustion point at 6480 min, with a theoretical phosphorus saturation adsorption capacity of 6050 mg/kg. The process was well described by the Thomas and Yoon-Nelson models, which indicated that this is a surface adsorption process, without the internal participation of the adsorbent.


Assuntos
Lotus , Poluentes Químicos da Água , Fósforo , Águas Residuárias , Fosfatos/química , Carvão Vegetal , Adsorção , Lantânio/química , Poluentes Químicos da Água/química , Sementes , Cinética
5.
Int J Biol Macromol ; 265(Pt 2): 131009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513905

RESUMO

Annona montana mucilage (AMM) is a novel mucilage with unique but limited information. This study investigated the effects of AMM addition on the pasting and rheological properties of wheat starch (WS), corn starch (CS), water caltrop starch (WCS), and lotus rhizome starch (LRS). The addition of AMM generally increased the pasting temperature and peak viscosity, but reduced the setback value of all starches to varying degrees, and the initiation of viscosity-increase for cereal starch/AMM systems during pasting occurred at lower temperatures, accompanied with a distinctive two-stage swelling process as well as lower peak and final hot paste viscosity at 50 °C. AMM significantly increased the pseudoplasticity and entanglement of the systems to varying degrees (LRS > WS > WCS > CS). Under a constant shear rate of 50 s-1, the consistency level was found to fall in honey-like for cereal starch/AMM groups, and honey-like to extremely thick levels for WCS and LRS/AMM groups. Except for the WCS/AMM systems, the storage and loss modulus as well as tan increased with increasing AMM concentration. Short-term retrogradation of starch at 4 °C was pronouncedly retarded by the addition of AMM for WS, CS and WCS groups, but was less affected for LRS group.


Assuntos
Annona , Lotus , Lythraceae , Zea mays , Triticum , Montana , Rizoma , Amido , Polissacarídeos , Viscosidade
6.
PeerJ ; 12: e16900, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38435994

RESUMO

Background: Land management change towards intensive grazing has been shown to alter plant and pollinator communities and the structure of plant-pollinator interactions in different ways across the world. Land-use intensification in Eastern Europe is shifting highly diverse, traditionally managed hay meadows towards intensive pastures, but few studies have examined how this influences plant-pollinator networks. We hypothesized that the effects of intensive grazing on networks will depend on how plant communities and their floral traits change. Methods: We investigated plant and pollinator diversity and composition and the structure of plant-pollinator interactions near Sibiu, Romania at sites that were traditionally managed as hay meadows or intensive pastures. We quantified the identity and abundance of flowering plants, and used transect walks to observe pollinator genera interacting with flowering plant species. We evaluated the effects of management on diversity, composition and several indices of network structure. Results: Pollinator but not plant diversity declined in pastures and both plant and pollinator taxonomic composition shifted. Functional diversity and composition remained unchanged, with rather specialized flowers having been found to dominate in both hay meadows and pastures. Apis mellifera was found to be the most abundant pollinator. Its foraging preferences played a crucial role in shaping plant-pollinator network structure. Apis mellifera thus preferred the highly abundant Dorycnium herbaceum in hay meadows, leading to hay meadows networks with lower Shannon diversity and interaction evenness. In pastures, however, it preferred less abundant and more generalized flower resources. With pollinators being overall less abundant and more generalized in pastures, we found that niche overlap between plants was higher. Discussion: With both hay meadows and pastures being dominated by plant species with similar floral traits, shifts in pollinator preferences seem to have driven the observed changes in plant-pollinator interaction networks. We thus conclude that the effects of grazing on pollinators and their interactions are likely to depend on the traits of plant species present in different management types as well as on the effects of grazing on plant community composition. We thereby highlight the need for better understanding how floral abundance shapes pollinator visitation rates and how floral traits may influence this relationship.


Assuntos
Lotus , Magnoliopsida , Animais , Abelhas , Romênia , Europa Oriental , Flores , Interações Ervas-Drogas
7.
BMC Plant Biol ; 24(1): 163, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431568

RESUMO

Auxin response factors (ARFs) play a crucial role in regulating gene expression within the auxin signal transduction pathway, particularly during adventitious root (AR) formation. In this investigation, we identified full-length sequences for ARF17 and ARF18, encompassing 1,800 and 2,055 bp, encoding 599 and 684 amino acid residues, respectively. Despite exhibiting low sequence homology, the ARF17- and ARF18-encoded proteins displayed significant structural similarity and shared identical motifs. Phylogenetic analysis revealed close relationships between NnARF17 and VvARF17, as well as NnARF18 and BvARF18. Both ARF17 and ARF18 demonstrated responsiveness to exogenous indole-3-acetic acid (IAA), ethephon, and sucrose, exhibiting organ-specific expression patterns. Beyond their role in promoting root development, these ARFs enhanced stem growth and conferred drought tolerance while mitigating waterlogging stress in transgenic Arabidopsis plants. RNA sequencing data indicated upregulation of 51 and 75 genes in ARF17 and ARF18 transgenic plants, respectively, including five and three genes associated with hormone metabolism and responses. Further analysis of transgenic plants revealed a significant decrease in IAA content, accompanied by a marked increase in abscisic acid content under normal growth conditions. Additionally, lotus seedlings treated with IAA exhibited elevated levels of polyphenol oxidase, IAA oxidase, and peroxidase. The consistent modulation of IAA content in both lotus and transgenic plants highlights the pivotal role of IAA in AR formation in lotus seedlings.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Lotus , Arabidopsis/metabolismo , Lotus/metabolismo , Filogenia , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Plântula/genética , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/genética
8.
Plant Sci ; 342: 112036, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38365002

RESUMO

Drought stress often affects crop growth and even causes crop death, while aquaporins can maintain osmotic balance by transporting water across membranes, so it is important to study how to improve drought tolerance of crops by using aquaporins. In this work, we characterize a set of subfamily members named NIPs belonging to the family of aquaporins in Lotus japonicus, grouping 14 family members based on the sequence similarity in the aromatic/arginine (Ar/R) region. Among these members, LjNIP1;5 is one of the genes with the highest expression in roots which is induced by the AM fungus. In Lotus japonicus, LjNIP1;5 is highly expressed in symbiotic roots, and its promoter can be induced by drought stress and AM fungus. Root colonization analysis reveals that ljnip1:5 mutant exhibits lower mycorrhizal colonization than the wild type, with increasing the proportion of large arbuscule, and fewer arbuscule produced by symbiosis under drought stress. In the LjNIP1;5OE plant, we detected a strong antioxidant capacity compared to the control, and LjNIP1;5OE showed higher stem length under drought stress. Taken together, the current results facilitate our comprehensive understanding of the plant adaptive to drought stress with the coordination of the specific fungi.


Assuntos
Aquaporinas , Lotus , Micorrizas , Simbiose/genética , Lotus/genética , Lotus/metabolismo , Resistência à Seca , Aquaporinas/genética , Aquaporinas/metabolismo , Raízes de Plantas/metabolismo
9.
Cien Saude Colet ; 29(2): e03592023, 2024 Feb.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38324824

RESUMO

This article stems from interviews conducted with Chinese women residing in Lisbon, aged 18-34, during the initial phase of fieldwork (2021/2022). As an outcome of my Anthropology Ph.D. project, the focus here is on comprehending the perception of Asian women within the realm of everyday life as fetishized entities and how they persist in (re)shaping their identities. By primarily examining visual "yellow fever" depictions (in Hollywood cinema through films like "The World of Suzie Wong", "Madame Butterfly", "Miss Saigon", and the "Year of the Dragon", along with interracial Pornography), I endeavor to delve into the impact of "race", "sexual fetishization", and the ubiquitous propagation of stereotypical imagery on the lives of the individuals I engage with.


Este artigo provém das entrevistas realizadas com mulheres Chinesas residentes em Lisboa, com idades compreendidas entre os 18 e os 34 anos, no decorrer da primeira fase do trabalho de campo (2021/2022). Resultante do meu projeto de Doutoramento em Antropologia aqui busco compreender como mulheres asiáticas são observadas na experiência do quotidiano enquanto organismos fetichizados e como seguem (re)construindo as suas identidades. Percorrendo essencialmente representações visuais da "yellow fever" (o cinema de Hollywood em filmes como "O Mundo de Suzie Wong", "Madame Butterfly", "Miss Saigon" e "Year of the Dragon" e a pornografia inter-racial) procuro explorar como a "raça", a "fetichização sexual" e as imagens estereotipadas exaustivamente disseminadas, afetam a vida das minhas interlocutoras.


Assuntos
Lotus , Feminino , Humanos , Comportamento Sexual , Filmes Cinematográficos
10.
Plant Mol Biol ; 114(2): 21, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38368585

RESUMO

Arbuscular mycorrhizal symbiosis (AM) is a beneficial trait originating with the first land plants, which has subsequently been lost by species scattered throughout the radiation of plant diversity to the present day, including the model Arabidopsis thaliana. To explore if elements of this apparently beneficial trait are still present and could be reactivated we generated Arabidopsis plants expressing a constitutively active form of Interacting Protein of DMI3, a key transcription factor that enables AM within the Common Symbiosis Pathway, which was lost from Arabidopsis along with the AM host trait. We characterize the transcriptomic effect of expressing IPD3 in Arabidopsis with and without exposure to the AM fungus (AMF) Rhizophagus irregularis, and compare these results to the AM model Lotus japonicus and its ipd3 knockout mutant cyclops-4. Despite its long history as a non-AM species, restoring IPD3 in the form of its constitutively active DNA-binding domain to Arabidopsis altered expression of specific gene networks. Surprisingly, the effect of expressing IPD3 in Arabidopsis and knocking it out in Lotus was strongest in plants not exposed to AMF, which is revealed to be due to changes in IPD3 genotype causing a transcriptional state, which partially mimics AMF exposure in non-inoculated plants. Our results indicate that molecular connections to symbiosis machinery remain in place in this nonAM species, with implications for both basic science and the prospect of engineering this trait for agriculture.


Assuntos
Arabidopsis , Lotus , Arabidopsis/genética , Simbiose/genética , Genótipo , Agricultura , Evolução Biológica , Lotus/genética
11.
Funct Integr Genomics ; 24(2): 42, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38396290

RESUMO

Four species of Saussurea, namely S. involucrata, S. orgaadayi, S. bogedaensis, and S. dorogostaiskii, are known as the "snow lotus," which are used as traditional medicines in China (Xinjiang), Kyrgyzstan, Mongolia, and Russia (Southern Siberia). These species are threatened globally, because of illegal harvesting and climate change. Furthermore, the taxonomic classification and identification of these threatened species remain unclear owing to limited research. The misidentification of medicinal species can sometimes be harmful to health. Therefore, the phylogenetic and genomic features of these species need to be confirmed. In this study, we sequenced five complete chloroplast genomes and seven nuclear ITS regions of four snow lotus species and other Saussurea species. We further explored their genetic variety, selective pressure at the sequence level, and phylogenetic relationships using the chloroplast genome, nuclear partial DNA sequences, and morphological features. Plastome of the snow lotus species has a conserved structure and gene content similar to most Saussurea species. Two intergenic regions (ndhJ-ndhK and ndhD-psaC) show significantly high diversity among chloroplast regions. Thus, ITS and these markers are suitable for identifying snow lotus species. In addition, we characterized 43 simple sequence repeats that may be useful in future population genetic studies. Analysis of the selection signatures identified three genes (rpoA, ndhB, and ycf2) that underwent positive selection. These genes may play important roles in the adaptation of the snow lotus species to alpine environments. S. dorogostaiskii is close to S. baicalensis and exhibits slightly different adaptation from others. The taxonomic position of the snow lotus species, confirmed by morphological and molecular evidence, is as follows: (i) S. involucrata has been excluded from the Mongolian flora due to misidentification as S. orgaadayi or S. bogedaensis for a long time; (ii) S. dorogostaiskii belongs to section Pycnocephala subgenus Saussurea, whereas other the snow lotus species belong to section Amphilaena subgenus Amphilaena; and (iii) S. krasnoborovii is synonymous of S. dorogostaiskii. This study clarified the speciation and lineage diversification of the snow lotus species in Central Asia and Southern Siberia.


Assuntos
Asteraceae , Lotus , Saussurea , Saussurea/genética , Saussurea/química , Filogenia , Sibéria
12.
J Agric Food Chem ; 72(7): 3763-3772, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38330914

RESUMO

The crystal structure of a truncated form of the Lotus japonicus glycogen synthase kinase 3ß (GSK3ß) like kinase (LjSK190-467) has been resolved at 2.9 Å resolution, providing, for the first time, structural data for a plant GKS3ß like kinase. The 3D structure of LjSK190-467 revealed conservation at the structural level for this plant member of the GSK3ß family. However, comparative structural analysis to the human homologue revealed significant differences at the N- and C-termini, supporting the notion for an additional regulatory mechanism in plant GSK3-like kinases. Structural similarities at the catalytic site and the ATP binding site explained the similarity in the function of the human and plant protein. LjSK1 and lupeol are strongly linked to symbiotic bacterial infection and nodulation initiation. An inhibitory capacity of lupeol (IC50 = 0.77 µM) for LjSK1 was discovered, providing a biochemical explanation for the involvement of these two molecules in nodule formation, and constituted LjSK1 as a molecular target for the discovery of small molecule modulators for crop protection and development. Studies on the inhibitory capacity of two phytogenic triterpenoids (betulinic acid and hederacoside C) to LjSK1 provided their structure-activity relationship and showed that hederacoside C can be the starting point for such endeavors.


Assuntos
Lotus , Lupanos , Ácido Oleanólico/análogos & derivados , Humanos , Lotus/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Nódulos Radiculares de Plantas/metabolismo
13.
Plant Genome ; 17(1): e20429, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38243772

RESUMO

Circular RNAs (circRNAs) are covalently closed single-stranded RNAs, generated through a back-splicing process that links a downstream 5' site to an upstream 3' end. The only distinction in the sequence between circRNA and their linear cognate RNA is the back splice junction. Their low abundance and sequence similarity with their linear origin RNA have made the discovery and identification of circRNA challenging. We have identified almost 6000 novel circRNAs from Lotus japonicus leaf tissue using different enrichment, amplification, and sequencing methods as well as alternative bioinformatics pipelines. The different methodologies identified different pools of circRNA with little overlap. We validated circRNA identified by the different methods using reverse transcription polymerase chain reaction and characterized sequence variations using nanopore sequencing. We compared validated circRNA identified in L. japonicus to other plant species and showed conservation of high-confidence circRNA-expressing genes. This is the first identification of L. japonicus circRNA and provides a resource for further characterization of their function in gene regulation. CircRNAs identified in this study originated from genes involved in all biological functions of eukaryotic cells. The comparison of methodologies and technologies to sequence, identify, analyze, and validate circRNA from plant tissues will enable further research to characterize the function and biogenesis of circRNA in L. japonicus.


Assuntos
Lotus , RNA Circular , RNA Circular/genética , RNA Circular/metabolismo , Lotus/genética , Lotus/metabolismo , RNA , Splicing de RNA , Regulação da Expressão Gênica
14.
Plant Biol (Stuttg) ; 26(2): 245-256, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38196283

RESUMO

This study was designed to elucidate the physiological responses of three Lotus forage accessions to alkaline stress, and the influence of inoculating with Pantoea eucalypti endophyte strain on alkaline stress mitigation. A diploid L. corniculatus (Lc) accession, L. tenuis (Lt), and the interspecific hybrid Lt × Lc obtained from these two parental lines were exposed to alkaline stress (pH 8.2). Both Lt and the Lt × Lc hybrid are alkaline-tolerant compared to Lc, based on observations that dry mass was not reduced under stress, and there were no chlorosis symptoms on leaf blades. In all three Lotus accessions, Fe2+ concentration under stress decreased in aerial parts and simultaneously increased in roots. Inoculation with P. eucalypti considerably increased Fe2+ content in shoots of all three Lotus forage species under alkaline treatment. Photochemical efficiency of PSII was affected in Lc accession only when exposed to alkaline treatment. However, when cultivated under alkalinity with inoculation, plants recovered and had photosynthetic parameters equivalent to those in the control treatment. Together, the results highlight the importance of inoculation with P. eucalypti, which contributes significantly to mitigating alkaline stress. All results provide useful information for improving alkaline tolerance traits of Lotus forage species and their interspecific hybrids.


Assuntos
Lotus , Pantoea , Lotus/fisiologia , Hibridização Genética , Fotossíntese
15.
Nat Commun ; 15(1): 733, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286991

RESUMO

Legumes control root nodule symbiosis (RNS) in response to environmental nitrogen availability. Despite the recent understanding of the molecular basis of external nitrate-mediated control of RNS, it remains mostly elusive how plants regulate physiological processes depending on internal nitrogen status. In addition, iron (Fe) acts as an essential element that enables symbiotic nitrogen fixation; however, the mechanism of Fe accumulation in nodules is poorly understood. Here, we focus on the transcriptome in response to internal nitrogen status during RNS in Lotus japonicus and identify that IRON MAN (IMA) peptide genes are expressed during symbiotic nitrogen fixation. We show that LjIMA1 and LjIMA2 expressed in the shoot and root play systemic and local roles in concentrating internal Fe to the nodule. Furthermore, IMA peptides have conserved roles in regulating nitrogen homeostasis by adjusting nitrogen-Fe balance in L. japonicus and Arabidopsis thaliana. These findings indicate that IMA-mediated Fe provision plays an essential role in regulating nitrogen-related physiological processes.


Assuntos
Arabidopsis , Lotus , Humanos , Nódulos Radiculares de Plantas/metabolismo , Nitrogênio , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lotus/metabolismo , Fixação de Nitrogênio/fisiologia , Simbiose/fisiologia , Homeostase , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Nodulação/genética
16.
Plant Sci ; 340: 111984, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220094

RESUMO

Various reactive molecular species are generated in plant-microbe interactions, and these species participate in defense and symbiotic responses. Leguminous plants successfully establish symbiosis by maintaining an appropriate level of nitric oxide (NO), which is generated in the roots and nodules during root nodule symbiosis. Phytoglobin (plant hemoglobin) controls NO levels in plants. In this study, we investigated mycorrhizal symbiosis, which occurs in more than 80% of land plants, between Rhizophagus irregularis and Lotus japonicus to clarify the involvement of phytoglobin-mediated NO regulation. The mycorrhizae of L. japonicus exhibited higher NO levels in the presence of R. irregularis than in its absence, especially at the infection site. LjGlb1-1, a phytoglobin that regulates NO level in L. japonicus, was upregulated during symbiosis with R. irregularis. In transformed hairy roots carrying the ProLjGlb1-1:GUS construct, LjGlb1-1 expression was observed at the R. irregularis infection site. We further examined the symbiotic phenotypes of L. japonicus lines with high and low LjGlb1-1 expression with R. irregularis. During mycorrhizal symbiosis, the high LjGlb1-1 expression line exhibited better growth than the wild-type, whereas the low expression line exhibited poor growth. In addition, the expression of LjPT4, a phosphate transporter specific to mycorrhizal symbiosis, was higher in the high LjGlb1-1 expression line, whereas that of the tubulin gene of R. irregularis was lower in the low LjGlb1-1 expression line than in the wild-type. These results confirm that NO regulation by LjGlb1-1 is involved in mycorrhizal symbiosis in L. japonicus, as it is reportedly in nitrogen-fixing symbiosis.


Assuntos
Fungos , Lotus , Micorrizas , Micorrizas/fisiologia , Simbiose/fisiologia , Lotus/metabolismo , Óxido Nítrico/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
17.
J Exp Bot ; 75(5): 1547-1564, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-37976184

RESUMO

Legume nodules express multiple leghemoglobins (Lbs) and non-symbiotic hemoglobins (Glbs), but how they are regulated is unclear. Here, we study the regulation of all Lbs and Glbs of Lotus japonicus in different physiologically relevant conditions and mutant backgrounds. We quantified hemoglobin expression, localized reactive oxygen species (ROS) and nitric oxide (NO) in nodules, and deployed mutants deficient in Lbs and in the transcription factors NLP4 (associated with nitrate sensitivity) and NAC094 (associated with senescence). Expression of Lbs and class 2 Glbs was suppressed by nitrate, whereas expression of class 1 and 3 Glbs was positively correlated with external nitrate concentrations. Nitrate-responsive elements were found in the promoters of several hemoglobin genes. Mutant nodules without Lbs showed accumulation of ROS and NO and alterations of antioxidants and senescence markers. NO accumulation occurred by a nitrate-independent pathway, probably due to the virtual disappearance of Glb1-1 and the deficiency of Lbs. We conclude that hemoglobins are regulated in a gene-specific manner during nodule development and in response to nitrate and dark stress. Mutant analyses reveal that nodules lacking Lbs experience nitro-oxidative stress and that there is compensation of expression between Lb1 and Lb2. They also show modulation of hemoglobin expression by NLP4 and NAC094.


Assuntos
Lotus , Nitratos , Nitratos/metabolismo , Lotus/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Hemoglobinas/genética , Hemoglobinas/metabolismo , Leghemoglobina/metabolismo , Óxido Nítrico/metabolismo , Simbiose , Nódulos Radiculares de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
18.
Int J Biol Macromol ; 254(Pt 1): 127818, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918602

RESUMO

Lotus rhizome residue, a cell wall material produced during the production of lotus rhizome starch, has long been underutilized. This study aims to extract pectin-rich polysaccharides from the cell wall of lotus rhizome and investigate their gelation mechanism in order to improve their industrial applicability. The results indicated that both CP and MP (pectin extracted from crisp and mealy lotus rhizome) exhibited a highly linear low methoxyl pectin structure, with the primary linkage mode being →4)-GalpA-(1→. The pectin chains in MP were found to be more flexible than those in CP. Then the impact of Na+, D-glucono-d-lactone (GDL), urea, sodium dodecyl sulfate (SDS), either individually or in combination, on the rheological characteristics of gels was evaluated. The results indicated that gels induced by GDL exhibited favorable thermoreversible properties, whereas the thermoreversibility of Na+-induced gels is poor. In addition to hydrogen bonding and ionic interactions, hydrophobic interactions also play a significant role in the formation of pectin gels. This study offers theoretical guidance and methodologies to improve the utilization rate of lotus rhizome starch processing by-products, while also provides novel insights into the correlation between LMP structure and gelation mechanism.


Assuntos
Lotus , Pectinas , Pectinas/química , Lactonas/química , Rizoma/química , Amido/análise , Géis/química
19.
J Exp Bot ; 75(2): 605-619, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37712520

RESUMO

Plants activate an immune or symbiotic response depending on the detection of distinct signals from root-interacting microbes. Both signalling cascades involve Ca2+ as a central mediator of early signal transduction. In this study, we combined aequorin- and cameleon-based methods to dissect the changes in cytosolic and nuclear Ca2+ concentration caused by different chitin-derived fungal elicitors in Lotus japonicus roots. Our quantitative analyses highlighted the dual character of the evoked Ca2+ responses taking advantage of the comparison between different genetic backgrounds: an initial Ca2+ influx, dependent on the LysM receptor CERK6 and independent of the common symbiotic signalling pathway (CSSP), is followed by a second CSSP-dependent and CERK6-independent phase, that corresponds to the well-known perinuclear/nuclear Ca2+ spiking. We show that the expression of immunity marker genes correlates with the amplitude of the first Ca2+ change, depends on elicitor concentration, and is controlled by Ca2+ storage in the vacuole. Our findings provide an insight into the Ca2+-mediated signalling mechanisms discriminating plant immunity- and symbiosis-related pathways in the context of their simultaneous activation by single fungal elicitors.


Assuntos
Lotus , Micorrizas , Simbiose/genética , Micorrizas/fisiologia , Lotus/metabolismo , Cálcio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Funct Plant Biol ; 51(1): NULL, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814354

RESUMO

Flooding significantly hampers global forage production. In flood-prone regions, Lotus tenuis and Lotus corniculatus are common forage legumes, yet little is known about their responses to partial or complete submergence. To address this, we evaluated 10 Lotus accessions subjected to 11days of either partial or complete submergence, analysing growth traits related to tolerance and recovery after de-submergence. Principal component analyses revealed that submergence associated growth parameters were linked to L. corniculatus accessions, whereas recovery was associated with L. tenuis accessions. Notably, in L. tenuis , recovery from complete submergence positively correlated with leaf mass fraction but negatively with root mass fraction, showing an opposite pattern than in L. corniculatus . Encouragingly, no trade-off was found between inherent growth capacity and submergence tolerance (both partial and complete) or recovery ability, suggesting genetic selection for increased tolerance would not compromise growth potential. L. tenuis exhibited accessions with both partial and complete submergence tolerance, making them versatile for flood-prone environments, whereas L. corniculatus accessions were better suited for partial submergence. These findings offer valuable insights to enhance forage production in flood-prone areas and guide the selection of appropriate Lotus accessions for specific flood conditions.


Assuntos
Lotus , Lotus/genética , Inundações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...